Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
PLoS One ; 19(3): e0299779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483896

RESUMO

Regulation of mRNA translation by eukaryotic initiation factors (eIFs) is crucial for cell survival. In humans, eIF3 stimulates translation of the JUN mRNA which encodes the transcription factor JUN, an oncogenic transcription factor involved in cell cycle progression, apoptosis, and cell proliferation. Previous studies revealed that eIF3 activates translation of the JUN mRNA by interacting with a stem loop in the 5' untranslated region (5' UTR) and with the 5' -7-methylguanosine cap structure. In addition to its interaction site with eIF3, the JUN 5' UTR is nearly one kilobase in length, and has a high degree of secondary structure, high GC content, and an upstream start codon (uAUG). This motivated us to explore the complexity of JUN mRNA translation regulation in human cells. Here we find that JUN translation is regulated in a sequence and structure-dependent manner in regions adjacent to the eIF3-interacting site in the JUN 5' UTR. Furthermore, we identify contributions of an additional initiation factor, eIF4A, in JUN regulation. We show that enhancing the interaction of eIF4A with JUN by using the compound Rocaglamide A (RocA) represses JUN translation. We also find that both the upstream AUG (uAUG) and the main AUG (mAUG) contribute to JUN translation and that they are conserved throughout vertebrates. Our results reveal additional layers of regulation for JUN translation and show the potential of JUN as a model transcript for understanding multiple interacting modes of translation regulation.


Assuntos
Fator de Iniciação 3 em Eucariotos , Biossíntese de Proteínas , Animais , Humanos , Códon de Iniciação/genética , Regiões 5' não Traduzidas/genética , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
2.
Nat Commun ; 15(1): 2551, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514606

RESUMO

Eukaryotic initiation translation factor 3 subunit h (EIF3H) plays critical roles in regulating translational initiation and predicts poor cancer prognosis, but the mechanism underlying EIF3H tumorigenesis remains to be further elucidated. Here, we report that EIF3H is overexpressed in colorectal cancer (CRC) and correlates with poor prognosis. Conditional Eif3h deletion suppresses colorectal tumorigenesis in AOM/DSS model. Mechanistically, EIF3H functions as a deubiquitinase for HAX1 and stabilizes HAX1 via antagonizing ßTrCP-mediated ubiquitination, which enhances the interaction between RAF1, MEK1 and ERK1, thereby potentiating phosphorylation of ERK1/2. In addition, activation of Wnt/ß-catenin signaling induces EIF3H expression. EIF3H/HAX1 axis promotes CRC tumorigenesis and metastasis in mouse orthotopic cancer model. Significantly, combined targeting Wnt and RAF1-ERK1/2 signaling synergistically inhibits tumor growth in EIF3H-high patient-derived xenografts. These results uncover the important roles of EIF3H in mediating CRC progression through regulating HAX1 and RAF1-ERK1/2 signaling. EIF3H represents a promising therapeutic target and prognostic marker in CRC.


Assuntos
Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Humanos , Animais , Camundongos , Fosforilação , Transformação Celular Neoplásica/genética , Carcinogênese , Via de Sinalização Wnt , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Neoplasias Colorretais/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Aging (Albany NY) ; 16(7): 5929-5948, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535990

RESUMO

Study finds that eukaryotic translation initiation factor 3 subunit D (EIF3D) may play an important role in aberrant alternative splicing (AS) events in tumors. AS possesses a pivotal role in both tumour progression and the constitution of the tumour microenvironment (TME). Regrettably, our current understanding of AS remains circumscribed especially in the context of immunogene-related alternative splicing (IGAS) profiles within Head and Neck Squamous Cell Carcinoma (HNSC). In this study, we comprehensively analyzed the function and mechanism of action of EIF3D by bioinformatics analysis combined with in vitro cellular experiments, and found that high expression of EIF3D in HNSC was associated with poor prognosis of overall survival (OS) and progression-free survival (PFS). The EIF3D low expression group had a higher degree of immune infiltration and better efficacy against PD1 and CTLA4 immunotherapy compared to the EIF3D high expression group. TCGA SpliceSeq analysis illustrated that EIF3D influenced differentially spliced alternative splicing (DSAS) events involving 105 differentially expressed immunogenes (DEIGs). We observed an induction of apoptosis and a suppression of cell proliferation, migration, and invasion in EIF3D knock-down FaDu cells. RNA-seq analysis unveiled that 531 genes exhibited differential expression following EIF3D knockdown in FaDu cells. These include 52 DEIGs. Furthermore, EIF3D knockdown influenced the patterns of 1923 alternative splicing events (ASEs), encompassing 129 IGASs. This study identified an RNA splicing regulator and revealed its regulatory role in IGAS and the TME of HNSC, suggesting that EIF3D may be a potential target for predicting HNSC prognosis and immunotherapeutic response.


Assuntos
Processamento Alternativo , Fator de Iniciação 3 em Eucariotos , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Processamento Alternativo/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Prognóstico , Apoptose/genética , Masculino , Movimento Celular/genética , Feminino
4.
Oncogene ; 43(14): 1050-1062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374407

RESUMO

In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/ß-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Tetraspaninas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Transição Epitelial-Mesenquimal , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , Via de Sinalização Wnt
5.
mBio ; 15(3): e0322123, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38335095

RESUMO

The survival of Legionella spp. as intracellular pathogens relies on the combined action of protein effectors delivered inside their eukaryotic hosts by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IVb secretion system. The specific repertoire of effector arsenals varies dramatically across over 60 known species of this genera with Legionella pneumophila responsible for most cases of Legionnaires' disease in humans encoding over 360 Dot/Icm effectors. However, a small subset of "core" effectors appears to be conserved across all Legionella species raising an intriguing question of their role in these bacteria's pathogenic strategy, which for most of these effectors remains unknown. L. pneumophila Lpg0103 effector, also known as VipF, represents one of the core effector families that features a tandem of Gcn5-related N-acetyltransferase (GNAT) domains. Here, we present the crystal structure of the Lha0223, the VipF representative from Legionella hackeliae in complex with acetyl-coenzyme A determined to 1.75 Å resolution. Our structural analysis suggested that this effector family shares a common fold with the two GNAT domains forming a deep groove occupied by residues conserved across VipF homologs. Further analysis suggested that only the C-terminal GNAT domain of VipF effectors retains the active site composition compatible with catalysis, whereas the N-terminal GNAT domain binds the ligand in a non-catalytical mode. We confirmed this by in vitro enzymatic assays which revealed VipF activity not only against generic small molecule substrates, such as chloramphenicol, but also against poly-L-lysine and histone-derived peptides. We identified the human eukaryotic translation initiation factor 3 (eIF3) complex co-precipitating with Lpg0103 and demonstrated the direct interaction between the several representatives of the VipF family, including Lpg0103 and Lha0223 with the K subunit of eIF3. According to our data, these interactions involve primarily the C-terminal tail of eIF3-K containing two lysine residues that are acetylated by VipF. VipF catalytic activity results in the suppression of eukaryotic protein translation in vitro, revealing the potential function of VipF "core" effectors in Legionella's pathogenic strategy.IMPORTANCEBy translocating effectors inside the eukaryotic host cell, bacteria can modulate host cellular processes in their favor. Legionella species, which includes the pneumonia-causing Legionella pneumophila, encode a widely diverse set of effectors with only a small subset that is conserved across this genus. Here, we demonstrate that one of these conserved effector families, represented by L. pneumophila VipF (Lpg0103), is a tandem Gcn5-related N-acetyltransferase interacting with the K subunit of human eukaryotic initiation factor 3 complex. VipF catalyzes the acetylation of lysine residues on the C-terminal tail of the K subunit, resulting in the suppression of eukaryotic translation initiation factor 3-mediated protein translation in vitro. These new data provide the first insight into the molecular function of this pathogenic factor family common across Legionellae.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Acetiltransferases/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Lisina/metabolismo , Fator de Iniciação 3 em Procariotos/metabolismo , Legionella/genética , Legionella pneumophila/genética , Biossíntese de Proteínas , Proteínas de Bactérias/metabolismo
6.
Nucleic Acids Res ; 51(20): 10950-10969, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811880

RESUMO

An RNA structure or modified RNA sequences can provide a platform for ribosome loading and internal translation initiation. The functional significance of internal translation has recently been highlighted by the discovery that a subset of circular RNAs (circRNAs) is internally translated. However, the molecular mechanisms underlying the internal initiation of translation in circRNAs remain unclear. Here, we identify eIF3g (a subunit of eIF3 complex) as a binding partner of eIF4A3, a core component of the exon-junction complex (EJC) that is deposited onto spliced mRNAs and plays multiple roles in the regulation of gene expression. The direct interaction between eIF4A3-eIF3g serves as a molecular linker between the eIF4A3 and eIF3 complex, thereby facilitating internal ribosomal entry. Protein synthesis from in vitro-synthesized circRNA demonstrates eIF4A3-driven internal translation, which relies on the eIF4A3-eIF3g interaction. Furthermore, our transcriptome-wide analysis shows that efficient polysomal association of endogenous circRNAs requires eIF4A3. Notably, a subset of endogenous circRNAs can express a full-length intact protein, such as ß-catenin, in an eIF4A3-dependent manner. Collectively, our results expand the understanding of the protein-coding potential of the human transcriptome, including circRNAs.


Assuntos
Fator de Iniciação 3 em Eucariotos , Fator de Iniciação 4A em Eucariotos , RNA Circular , Humanos , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Proteínas , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
PLoS One ; 18(9): e0292080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768948

RESUMO

Improper regulation of translation initiation, a vital checkpoint of protein synthesis in the cell, has been linked to a number of cancers. Overexpression of protein subunits of eukaryotic translation initiation factor 3 (eIF3) is associated with increased translation of mRNAs involved in cell proliferation. In addition to playing a major role in general translation initiation by serving as a scaffold for the assembly of translation initiation complexes, eIF3 regulates translation of specific cellular mRNAs and viral RNAs. Mutations in the N-terminal Helix-Loop-Helix (HLH) RNA-binding motif of the EIF3A subunit interfere with Hepatitis C Virus Internal Ribosome Entry Site (IRES) mediated translation initiation in vitro. Here we show that the EIF3A HLH motif controls translation of a small set of cellular transcripts enriched in oncogenic mRNAs, including MYC. We demonstrate that the HLH motif of EIF3A acts specifically on the 5' UTR of MYC mRNA and modulates the function of EIF4A1 on select transcripts during translation initiation. In Ramos lymphoma cell lines, which are dependent on MYC overexpression, mutations in the HLH motif greatly reduce MYC expression, impede proliferation and sensitize cells to anti-cancer compounds. These results reveal the potential of the EIF3A HLH motif in eIF3 as a promising chemotherapeutic target.


Assuntos
Fator de Iniciação 3 em Eucariotos , Biossíntese de Proteínas , Humanos , RNA Mensageiro/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/metabolismo , Ribossomos/genética , Sequências Hélice-Alça-Hélice
8.
J Biol Chem ; 299(9): 105177, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37611825

RESUMO

Translational regulation is one of the decisive steps in gene expression, and its dysregulation is closely related to tumorigenesis. Eukaryotic translation initiation factor 3 subunit i (eIF3i) promotes tumor growth by selectively regulating gene translation, but the underlying mechanisms are largely unknown. Here, we show that eIF3i is significantly increased in colorectal cancer (CRC) and reinforces the proliferation of CRC cells. Using ribosome profiling and proteomics analysis, several genes regulated by eIF3i at the translation level were identified, including D-3-phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in the de novo serine synthesis pathway that participates in metabolic reprogramming of tumor cells. PHGDH knockdown significantly represses CRC cell proliferation and partially attenuates the excessive growth induced by eIF3i overexpression. Mechanistically, METTL3-mediated N6-methyladenosine modification on PHGDH mRNA promotes its binding with eIF3i, ultimately leading to a higher translational rate. In addition, knocking down eIF3i and PHGDH impedes tumor growth in vivo. Collectively, this study not only uncovered a novel regulatory mechanism for PHGDH translation but also demonstrated that eIF3i is a critical metabolic regulator in human cancer.


Assuntos
Neoplasias Colorretais , Fator de Iniciação 3 em Eucariotos , Regulação Neoplásica da Expressão Gênica , Fosfoglicerato Desidrogenase , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Metiltransferases/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , RNA Mensageiro/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação para Cima , Técnicas de Silenciamento de Genes , Regulação Neoplásica da Expressão Gênica/genética , Animais , Camundongos , Camundongos Endogâmicos BALB C , Feminino , Xenoenxertos
9.
Cell Commun Signal ; 21(1): 198, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559097

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal human malignancies, and with quite limited treatment alternatives. The proteasome is responsible for most of the protein degradation in eukaryotic cells and required for the maintenance of intracellular homeostasis. However, its potential role in HCC is largely unknown. In the current study, we identified eukaryotic translation initiation factor 3 subunit H (EIF3H), belonging to the JAB1/MPN/MOV34 (JAMM) superfamily, as a bona fide deubiquitylase of O-GlcNAc transferase (OGT) in HCC. We explored that EIF3H was positively associated with OGT in HCC and was related to the unfavorable prognosis. EIF3H could interact with, deubiquitylate, and stabilize OGT in a deubiquitylase-dependent manner. Specifically, EIF3H was associated with the GT domain of ERα via its JAB/MP domain, thus inhibiting the K48-linked ubiquitin chain on OGT. Besides, we demonstrated that the knockdown of EIF3H significantly reduced OGT protein expression, cell proliferation and invasion, and caused G1/S arrest of HCC. We also found that the deletion of EIF3H prompted ferroptosis in HCC cells. Finally, the effects of EIF3H depletion could be reversed by further OGT overexpression, implying that the OGT status is indispensable for EIF3H function in HCC carcinogenesis. In summary, our study described the oncogenic function of EIF3H and revealed an interesting post-translational mechanism between EIF3H, OGT, and ferroptosis in HCC. Targeting the EIF3H may be a promising approach in HCC. Video Abstract.


Assuntos
Carcinoma Hepatocelular , Fator de Iniciação 3 em Eucariotos , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo
10.
Cell Rep ; 42(6): 112646, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37314929

RESUMO

Cancer cell plasticity enables cell survival in harsh physiological environments and fate transitions such as the epithelial-to-mesenchymal transition (EMT) that underlies invasion and metastasis. Using genome-wide transcriptomic and translatomic studies, an alternate mechanism of cap-dependent mRNA translation by the DAP5/eIF3d complex is shown to be essential for metastasis, EMT, and tumor directed angiogenesis. DAP5/eIF3d carries out selective translation of mRNAs encoding EMT transcription factors and regulators, cell migration integrins, metalloproteinases, and cell survival and angiogenesis factors. DAP5 is overexpressed in metastatic human breast cancers associated with poor metastasis-free survival. In human and murine breast cancer animal models, DAP5 is not required for primary tumor growth but is essential for EMT, cell migration, invasion, metastasis, angiogenesis, and resistance to anoikis. Thus, cancer cell mRNA translation involves two cap-dependent mRNA translation mechanisms, eIF4E/mTORC1 and DAP5/eIF3d. These findings highlight a surprising level of plasticity in mRNA translation during cancer progression and metastasis.


Assuntos
Neoplasias da Mama , Fator de Iniciação 3 em Eucariotos , Fator de Iniciação 4G em Eucariotos , Biossíntese de Proteínas , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Fator de Iniciação 4G em Eucariotos/genética , Fator de Iniciação 4G em Eucariotos/metabolismo , Metástase Neoplásica , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo
11.
Nucleic Acids Res ; 51(12): 6355-6369, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37144468

RESUMO

The translation initiation machinery and the ribosome orchestrate a highly dynamic scanning process to distinguish proper start codons from surrounding nucleotide sequences. Here, we performed genome-wide CRISPRi screens in human K562 cells to systematically identify modulators of the frequency of translation initiation at near-cognate start codons. We observed that depletion of any eIF3 core subunit promoted near-cognate start codon usage, though sensitivity thresholds of each subunit to sgRNA-mediated depletion varied considerably. Double sgRNA depletion experiments suggested that enhanced near-cognate usage in eIF3D depleted cells required canonical eIF4E cap-binding and was not driven by eIF2A or eIF2D-dependent leucine tRNA initiation. We further characterized the effects of eIF3D depletion and found that the N-terminus of eIF3D was strictly required for accurate start codon selection, whereas disruption of the cap-binding properties of eIF3D had no effect. Lastly, depletion of eIF3D activated TNFα signaling via NF-κB and the interferon gamma response. Similar transcriptional profiles were observed upon knockdown of eIF1A and eIF4G2, which also promoted near-cognate start codon usage, suggesting that enhanced near-cognate usage could potentially contribute to NF-κB activation. Our study thus provides new avenues to study the mechanisms and consequences of alternative start codon usage.


Assuntos
Fator de Iniciação 3 em Eucariotos , RNA Guia de Sistemas CRISPR-Cas , Humanos , Códon de Iniciação/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Ribossomos/metabolismo
12.
EMBO J ; 42(12): e112362, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37155573

RESUMO

eIF3, whose subunits are frequently overexpressed in cancer, regulates mRNA translation from initiation to termination, but mRNA-selective functions of individual subunits remain poorly defined. Using multiomic profiling upon acute depletion of eIF3 subunits, we observed that while eIF3a, b, e, and f markedly differed in their impact on eIF3 holo-complex formation and translation, they were each required for cancer cell proliferation and tumor growth. Remarkably, eIF3k showed the opposite pattern with depletion promoting global translation, cell proliferation, tumor growth, and stress resistance through repressing the synthesis of ribosomal proteins, especially RPS15A. Whereas ectopic expression of RPS15A mimicked the anabolic effects of eIF3k depletion, disruption of eIF3 binding to the 5'-UTR of RSP15A mRNA negated them. eIF3k and eIF3l are selectively downregulated in response to endoplasmic reticulum and oxidative stress. Supported by mathematical modeling, our data uncover eIF3k-l as a mRNA-specific module which, through controlling RPS15A translation, serves as a rheostat of ribosome content, possibly to secure spare translational capacity that can be mobilized during stress.


Assuntos
Fator de Iniciação 3 em Eucariotos , Neoplasias , Humanos , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biossíntese de Proteínas
13.
Exp Cell Res ; 426(1): 113555, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921705

RESUMO

Pulmonary vascular remodeling caused by the excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) is the hallmark feature of pulmonary arterial hypertension (PAH). Eukaryotic initiation factor 3 subunit A (EIF3A) exhibited proliferative activity in multiple cell types. The present study investigated the role of EIF3A in the progression of PAH. A monocrotaline (MCT)-induced PAH rat model was constructed, and adeno-associated virus type 1 (AAV1) carrying EIF3A shRNA was intratracheally delivered to PAH rats to block EIF3A expression. PASMCs were isolated from rats and treated with PDGF-BB to simulate PASMC proliferation, and shRNA for EIF3 was conducted to investigate the mechanism behind the role of EIF3A in PASMC function in vitro. EIF3A expression was upregulated in pulmonary arteries, and EIF3A inhibition effectively improved pulmonary hypertension and right ventricular hypertrophy and suppressed MCT-induced vascular remodeling in vivo. In addition, we found that genetic knockdown of EIF3A reduced PDGF-triggered proliferation and arrested cell cycle, accompanied by downregulated proliferation-related protein expression in PASMCs. Mechanistically, the histone deacetylase 1 (HDAC1)-mediated PTEN/PI3K/AKT pathway was recognized as a primary mechanism in PAH progression. Silencing EIF3A decreased HDAC1 expression, and further inhibited the excessive proliferation of PASMCs by increasing the phosphatase and tension homolog (PTEN) expression and suppressing the AKT phosphorylation. Notably, HDAC1 expression reversed the effect of silencing EIF3A on PAH and PTEN/PI3K/AKT pathway. Collectively, silencing EIF3A improved PAH by decreasing PASMC proliferation through the HDAC1-mediated PTEN/PI3K/AKT pathway. These findings suggest that targeting EIF3A may represent a potential approach for the treatment of PAH.


Assuntos
Fator de Iniciação 3 em Eucariotos , Hipertensão Arterial Pulmonar , Animais , Ratos , Proliferação de Células/genética , Eucariotos/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Remodelação Vascular , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo
14.
J Biol Chem ; 299(5): 104658, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997088

RESUMO

Eukaryotic initiation factor 3d (eIF3d), a known RNA-binding subunit of the eIF3 complex, is a 66 to 68-kDa protein with an RNA-binding motif and a cap-binding domain. Compared with other eIF3 subunits, eIF3d is relatively understudied. However, recent progress in studying eIF3d has revealed a number of intriguing findings on its role in maintaining eIF3 complex integrity, global protein synthesis, and in biological and pathological processes. It has also been reported that eIF3d has noncanonical functions in regulating translation of a subset of mRNAs by binding to 5'-UTRs or interacting with other proteins independent of the eIF3 complex and additional functions in regulating protein stability. The noncanonical regulation of mRNA translation or protein stability may contribute to the role of eIF3d in biological processes such as metabolic stress adaptation and in disease onset and progression including severe acute respiratory syndrome coronavirus 2 infection, tumorigenesis, and acquired immune deficiency syndrome. In this review, we critically evaluate the recent studies on these aspects of eIF3d and assess prospects in understanding the function of eIF3d in regulating protein synthesis and in biological and pathological processes.


Assuntos
Progressão da Doença , Fator de Iniciação 3 em Eucariotos , Biossíntese de Proteínas , Capuzes de RNA , Humanos , COVID-19 , Fator de Iniciação 3 em Eucariotos/metabolismo , Capuzes de RNA/metabolismo , Síndrome de Imunodeficiência Adquirida , Carcinogênese , Regiões 5' não Traduzidas/genética
15.
Biomolecules ; 13(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979349

RESUMO

Eukaryotic initiation factor subunit I (EIF3i), also called as p36 or TRIP-1, is a component of the translation initiation complex and acts as a modulator of TGF-ß signaling. We demonstrated earlier that this intracellular protein is not only exported to the extracellular matrix via exosomes but also binds calcium phosphate and promotes hydroxyapatite nucleation. To assess other functional roles of TRIP-1, we first examined their phylogeny and showed that it is highly conserved in eukaryotes. Comparing human EIF3i sequence with that of 63 other eukaryotic species showed that more than 50% of its sequence is conserved, suggesting the preservation of its important functional role (translation initiation) during evolution. TRIP-1 contains WD40 domains and predicting its function based on this structural motif is difficult as it is present in a vast array of proteins with a wide variety of functions. Therefore, bioinformatics analysis was performed to identify putative regulatory functions for TRIP-1 by examining the structural domains and post-translational modifications and establishing an interactive network using known interacting partners such as type I collagen. Insight into the function of TRIP-1 was also determined by examining structurally similar proteins such as Wdr5 and GPSß, which contain a ß-propeller structure which has been implicated in the calcification process. Further, proteomic analysis of matrix vesicles isolated from TRIP-1-overexpressing preosteoblastic MC3T3-E1 cells demonstrated the expression of several key biomineralization-related proteins, thereby confirming its role in the calcification process. Finally, we demonstrated that the proteomic signature in TRIP1-OE MVs facilitated osteogenic differentiation of stem cells. Overall, we demonstrated by bioinformatics that TRIP-1 has a unique structure and proteomic analysis suggested that the unique osteogenic cargo within the matrix vesicles facilitates matrix mineralization.


Assuntos
Osteogênese , Proteômica , Humanos , Colágeno Tipo I/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Animais
16.
Biol Pharm Bull ; 46(2): 158-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724943

RESUMO

Translation initiation is the rate-limiting step of protein synthesis and is the main target of translation regulation. RNA-binding proteins (RBPs) are key mediators of the spatiotemporal control of translation and are critical for cell proliferation, development, and differentiation. We have previously shown that HuD, one of the neuronal RBPs, enhances cap-dependent translation through the direct interaction with eukaryotic initiation factor 4A (eIF4A) and poly(A) tail using a HeLa-derived in vitro translation system. We have also found that translation stimulation of HuD is essential for HuD-induced neurite outgrowth in PC12 cells. However, it remains unclear how HuD is involved in the regulation of translation initiation. Here, we report that HuD binds to eukaryotic initiation factor 3 (eIF3) via the eIF3b subunit, which belongs to the functional core of mammalian eIF3. eIF3 plays an essential role in recruiting the 40S ribosomal subunit onto mRNA in translation initiation. We hypothesize that the interaction between HuD and eIF3 stabilizes the translation initiation complex and increases translation efficiency. We also showed that the linker region of HuD is required for the interaction with eIF3b. Moreover, we found that eIF3b-binding region of HuD is conserved in all Hu proteins (HuB, HuC, HuD, and HuR). These data might also help to explain how Hu proteins stimulate translation in a cap- and poly(A)-dependent way.


Assuntos
Fator de Iniciação 3 em Eucariotos , Fatores de Iniciação em Eucariotos , Animais , Humanos , Ratos , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Neurônios/metabolismo , Fator de Iniciação 3 em Procariotos/genética , Fator de Iniciação 3 em Procariotos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células HeLa
17.
J Obstet Gynaecol ; 43(1): 2130200, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264610

RESUMO

The incidence of cervical cancer ranks third among all female tumours globally and second in developing countries. However, the role of eukaryotic translation initiation factor 3 subunit D (EIF3D) in cervical carcinoma is unknown. This study investigated the effects of EIF3D on cell progression of cervical carcinoma and its underlying mechanism in vivo and vitro models. There were increases of EIF3D expression mRNA and protein expression levels in patients with cervical carcinoma. Disease-free survival (DFS) and overall surviva (OS) of EIF3D lower expression in patients with cervical carcinoma was higher than those of EIF3D higher expression. EIF3D mRNA expression levels in cervical carcinoma cell lines (AV3, Hela229, CaSki and Hela cells) were up-regulated, compared with cervical normal cell line (UVECs). EIF3D promoted cell growth and Warburg effect in vitro model of cervical carcinoma. EIF3D interacting with GRP78 to reduce the activity of GRP78 in vitro model of cervical carcinoma. The inhibition of GRP78 reduced the effects of EIF3D on Warburg effect in vitro model of cervical carcinoma.Our work identifies EIF3D promoted cell growth and Warburg effect in vitro model of cervical carcinoma and the inhibition of EIF3D represents a potential therapeutic strategy for the treatment of cervical carcinoma.IMPACT STATEMENTWhat is already known on this subject? The incidence of cervical cancer ranks third among all female tumours globally and second in developing countries.What do the results of this study add? This study investigated the effects of EIF3D on cell progression of cervical carcinoma and its underlying mechanism in vivo and vitro models.What are the implications of these findings for clinical practice and/or further research? EIF3D promoted cell growth and Warburg effect in vitro model of cervical carcinoma and the inhibition of EIF3D represents a potential therapeutic strategy for the treatment of cervical carcinoma.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Células HeLa , Proliferação de Células , RNA Mensageiro , Linhagem Celular Tumoral , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo
18.
Nucleic Acids Res ; 50(20): 11529-11549, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36330957

RESUMO

Increasing studies have revealed that a subset of circular RNAs (circRNAs) harbor an open reading frame and can act as protein-coding templates to generate functional proteins that are closely associated with multiple physiological and disease-relevant processes, and thus proper regulation of synthesis of these circRNA-derived proteins is a fundamental cellular process required for homeostasis maintenance. However, how circRNA translation initiation is coordinated by different trans-acting factors remains poorly understood. In particular, the impact of different eukaryotic translation initiation factors (eIFs) on circRNA translation and the physiological relevance of this distinct regulation have not yet been characterized. In this study, we screened all 43 Drosophila eIFs and revealed the conflicting functions of eIF3 subunits in the translational control of the translatable circRNA circSfl: eIF3 is indispensable for circSfl translation, while the eIF3-associated factor eIF3j is the most potent inhibitor. Mechanistically, the binding of eIF3j to circSfl promotes the disassociation of eIF3. The C-terminus of eIF3j and an RNA regulon within the circSfl untranslated region (UTR) are essential for the inhibitory effect of eIF3j. Moreover, we revealed the physiological relevance of eIF3j-mediated circSfl translation repression in response to heat shock. Finally, additional translatable circRNAs were identified to be similarly regulated in an eIF3j-dependent manner. Altogether, our study provides a significant insight into the field of cap-independent translational regulation and undiscovered functions of eIF3.


Assuntos
Fator de Iniciação 3 em Eucariotos , RNA Circular , Citoplasma/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Biossíntese de Proteínas , RNA Circular/genética , Drosophila , Animais , Proteínas de Drosophila/metabolismo
19.
Thorac Cancer ; 13(22): 3133-3144, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36193788

RESUMO

Many studies have shown that circular RNA (circRNA) is an important regulator mediating the malignant progression of cancer. However, the role and mechanism of circ-EIF3I in lung cancer (LC) development are still unclear. A total 36 paired LC tumor tissues and adjacent normal tissues were enrolled. The expression of circ-EIF3I, microRNA (miR)-1253, and neuro-oncological ventral antigen 2 (NOVA2) was measured by quantitative real-time PCR. The proliferation, apoptosis, migration, and invasion of LC cells were determined by MTT assay, colony formation assay, flow cytometry, and transwell assay. Dual-luciferase reporter assay was performed to verify the interaction between miR-1253 and circ-EIF3I or NOVA2. The protein levels of NOVA2 and Wnt/ß-catenin pathway-related markers were detected by western blot analysis. Xenograft tumor was constructed to explore the function of circ-EIF3I on LC tumor growth. Circ-EIF3I was upregulated in LC tumor tissues and cells. Silenced circ-EIF3I could suppress the proliferation, migration, invasion, and enhance the apoptosis of LC cells in vitro, as well as reduce LC tumor growth in vivo. Circ-EIF3I could sponge miR-1253, and miR-1253 inhibitor overturned the regulation of circ-EIF3I knockdown on LC cell progression. NOVA2 was confirmed to be a target of miR-1253, which could reverse the inhibitory effects of miR-1253 on LC cell progression. Further experiments showed that circ-EIF3I regulated NOVA2 expression by sponging miR-1253. In addition, circ-EIF3I silencing could inhibit the activity of Wnt/ß-catenin pathway via regulating the miR-1253/NOVA2 axis. Circ-EIF3I might function as an oncogene in LC, which promoted LC progression by the miR-1253/NOVA2/Wnt/ß-catenin network.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , beta Catenina/metabolismo , Antígeno Neuro-Oncológico Ventral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/genética , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo
20.
Biomolecules ; 12(9)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139107

RESUMO

The synthesis of selenoproteins requires the co-translational recoding of an in-frame UGASec codon. Interactions between the Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2) in the 3'untranslated region (3'UTR) of selenoprotein mRNAs enable the recruitment of the selenocysteine insertion machinery. Several selenoprotein mRNAs undergo unusual cap hypermethylation and are not recognized by the translation initiation factor 4E (eIF4E) but nevertheless translated. The human eukaryotic translation initiation factor 3 (eIF3), composed of 13 subunits (a-m), can selectively recruit several cellular mRNAs and plays roles in specialized translation initiation. Here, we analyzed the ability of eIF3 to interact with selenoprotein mRNAs. By combining ribonucleoprotein immunoprecipitation (RNP IP) in vivo and in vitro with cross-linking experiments, we found interactions between eIF3 and a subgroup of selenoprotein mRNAs. We showed that eIF3 preferentially interacts with hypermethylated capped selenoprotein mRNAs rather than m7G-capped mRNAs. We identified direct contacts between GPx1 mRNA and eIF3 c, d, and e subunits and showed the existence of common interaction patterns for all hypermethylated capped selenoprotein mRNAs. Differential interactions of eIF3 with selenoprotein mRNAs may trigger specific translation pathways independent of eIF4E. eIF3 could represent a new player in the translation regulation and hierarchy of selenoprotein expression.


Assuntos
Fator de Iniciação 3 em Eucariotos , Selenoproteínas , Regiões 3' não Traduzidas , Códon , Elementos de DNA Transponíveis , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...